Modeling the electric field of weakly electric fish.

نویسندگان

  • David Babineau
  • André Longtin
  • John E Lewis
چکیده

Weakly electric fish characterize the environment in which they live by sensing distortions in their self-generated electric field. These distortions result in electric images forming across their skin. In order to better understand electric field generation and image formation in one particular species of electric fish, Apteronotus leptorhynchus, we have developed three different numerical models of a two-dimensional cross-section of the fish's body and its surroundings. One of these models mimics the real contour of the fish; two other geometrically simple models allow for an independent study of the effects of the fish's body geometry and conductivity on electric field and image formation. Using these models, we show that the fish's tapered body shape is mainly responsible for the smooth, uniform field in the rostral region, where most electroreceptors are located. The fish's narrowing body geometry is also responsible for the relatively large electric potential in the caudal region. Numerical tests also confirm the previous hypothesis that the electric fish body acts approximately like an ideal voltage divider; this is true especially for the tail region. Next, we calculate electric images produced by simple objects and find they vary according to the current density profile assigned to the fish's electric organ. This explains some of the qualitative differences previously reported for different modeling approaches. The variation of the electric image's shape as a function of different object locations is explained in terms of the fish's geometrical and electrical parameters. Lastly, we discuss novel cues for determining an object's rostro-caudal location and lateral distance using these electric images.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computational modeling of electric imaging in weakly electric fish: insights for physiology, behavior and evolution.

Weakly electric fish can sense electric signals produced by other animals whether they are conspecifics, preys or predators. These signals, sensed by passive electroreception, sustain electrocommunication, mating and agonistic behavior. Weakly electric fish can also generate a weak electrical discharge with which they can actively sense the animate and inanimate objects in their surroundings. U...

متن کامل

Study of leaky dielectric droplet behavior under an electric field: effect of viscosity and electric conductivity ratios

In this research, hydrodynamic behavior of a leaky dielectric droplet under an electric field is simulated. The level set method is used for interface tracking and the ghost fluid method is used for modeling discontinuous quantities at interface. Using Taylor’s leaky dielectric model, electric field and electric force at the interface is calculated. Simulation results show the droplet deformati...

متن کامل

Effects of restraint and immobilization on electrosensory behaviors of weakly electric fish.

Weakly electric fishes have been an important model system in behavioral neuroscience for more than 40 years. These fishes use a specialized electric organ to produce an electric field that is typically below 1 volt/cm and serves in many behaviors including social communication and prey detection. Electrical behaviors are easy to study because inexpensive and widely available tools enable conti...

متن کامل

Electrospinning of Polyacrylonitrile Nanofibers and Simulation of Electric Field via Finite Element method

Objective(s): Since the electric field is the main driving force in electrospinning systems, the modeling and analysis of electric field distribution are critical to the nanofibers production. The aim of this study was modeling of the electric field and investigating the various parameters on polyacrylonitrile (PAN) nanofibers morphology and diameter. Methods:</st...

متن کامل

Electrolocation based on tail-bending movements in weakly electric fish.

Weakly electric fish generate an electric field with their electric organ to navigate in space, detect objects and communicate with conspecifics. Several studies have examined how electric fish identify objects with their electroreceptors and use electric images for electrolocation. It has been argued that sensor readings from electroreceptors along the rostrocaudal line allow fish to determine...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 209 Pt 18  شماره 

صفحات  -

تاریخ انتشار 2006